

Epitaxial Y₁Ba₂Cu₃O_{7- δ} thin films with (103)/(110)- and (100)/(010)-orientation on NdGaO₃ and SrTiO₃ substrates grown by ion-beam sputter deposition

J-P. Krumme, V. Doormann, F. Welz, R. Eckart, and O. Dössel

Philips GmbH Forschungslaboratorien, Forschungsabteilung Technische Systeme Hamburg, Röntgenstr. 24-26, D-22335 Hamburg, Germany

W. Dingen

N. V. Philips, Natuurkundig Laboratorium, P.O. Box 80 000, NL-5600JA Eindhoven, The Netherlands

K. Schiffmann

Fraunhofer Institut für Schicht- und Oberflächentechnik, Vogt-Köllnstr. 30, D-22527 Hamburg, Germany

(Received 21 April 1994; accepted 5 July 1994)

A fully oxygen-compatible ion-beam sputter deposition process (IBS) has been implemented for investigation of four film/substrate couples: (103)/(110)YBCO on (110)SrTiO₃ (STO) and on (100)NdGaO₃ (NGO), and (100)/(010)YBCO on (110)NGO and on (100)STO. For comparison, some (103)/(110)YBCO films have also been prepared by off-axis rf-magnetron sputtering. Below about 600 °C semiconducting, sub-nm flat, and perfectly single-crystalline YBCO films crystallize on these substrates with a crystallographic unit cell of about 1/3 of the Cu–O subcell of YBCO and perfect registration with the Ti⁴⁺-O and Ga³⁺-O sublattice of STO and NGO, respectively. At higher temperature superconducting YBCO films grow coherently epitaxially in the first ~ 100 nm thickness; in thicker films the lattice-misfit strain relaxes to the "free" lattice constants. Above ~ 680 °C a faceted (103)YBCO orientation grows on (110)STO and (100)NGO substrates with uniform in-plane orientation of the [010]YBCO direction parallel to [001]STO and [001]NGO. Along [010]YBCO the (103)YBCO films exhibit high crystalline perfection and intrinsic superconducting properties approaching those of (001)YBCO films in the plane; i.e., $T_{c,0} > 88$ K, $\Delta T_{c,0} < 0.6$ K, $R_{300}/R_{100} > 2.9$, $\rho_{100} > 250 \ \mu\Omega$ cm, and j_c $(77 \text{ K}) \ge 10^6 \text{ A/cm}^2$. Practical use of (103)YBCO films is hampered by the large surface roughness. Above ~ 680 °C a mixed (100)/(010)YBCO orientation grows on (110)NGO substrates, exhibiting a very smooth surface but less attractive superconducting properties; typically, $T_{c,0} \le 80$ K, $\Delta T_{c,0} \sim 1$ K, $R_{300}/R_{100} \sim 1.2$, $\rho_{100} > 3$ m Ω cm, and j_c (77 K) $\leq 10^5$ A/cm². On (100)STO substrates the YBCO film orientation varies from pure (100)YBCO between \sim 580 and \sim 630 °C and mixed (100)/(010)YBCO below ~ 660 °C to pure (001) YBCO above ~ 670 °C. With rising temperature the surface roughness increases from <2 to ~ 6 nm-rms, while the other parameters continuously improve to state-of-the-art values for c_{\perp} -oriented films. Specifically, mixed (100)/(010)YBCO films reach $T_{c,0} > 86$ K, $\Delta T_{c,0} \sim 1$ K, $R_{300}/R_{100} > 2.8$, $\rho_{100} < 3 \text{ m}\Omega \text{cm}$, and j_c (77 K) > 10⁵ A/cm². (100)/(010)YBCO films on (100)STO are a promising candidate for sandwich-type SIS-JJ.

Keywords: Electrical properties; Superconductors; Thin film Materials: YBa₂Cu₃O_{7-x}/NdGaO₃

J. Mater. Res., Vol. 9, No. 12, p. 3032. © 1996 Materials Research Society